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Small-amplitude time-dependent motions of a uniformly rotating, density -stratified, 
Boussinesq non-dissipative fluid in a rigid container are examined for the case of the 
rotation axis parallel to  gravity. We consider a variety of container shapes, along with 
arbitrary values for the (constant) Brunt-Viiisiilii and rotation frequencies. We 
demonstrate a number of properties of the eigenvalues and eigenfunctions of square- 
integrable oscillatory motions. Some of these properties hold generally, while others 
are shown for specific classes of containers (such as with symmetry about the container 
axis). A full solution is presented for the response of fluid in a cylindrical container 
to an arbitrary initial disturbance. Features of this solution which are different from 
the cases of no stratification or no rotation are emphasized. For the situation when 
Brunt-Viiisltlii and rotation frequencies are equal, characteristics of the oscillation 
frequencies and modal structures are found for containers of quite general shape. This 
situation illustrates, in particular, effects which are possible when rotation and 
stratification act together and which have been overlooked in previous investigations 
that assume that the vertical length scale is much smaller than the horizontal scales. 

1. Introduction 
Fluids which are rotating or stratified are known to possess a fascinating variety of 

wave motions. In  this paper we are concerned with several aspects of small-amplitude 
oscillations in fluids which are both rotating and stratified. Discussion of such waves 
in unbounded media is found in a number of texts, for instance, Kamenkovich (1977), 
Krauss (1966) and Phillips (1977). However, the influence of boundary surfaces on 
these waves has been considered only recently, as is discussed below. Furthermore, we 
are unaware of any published investigations of the general type and characteristics 
of waves in rotating stratified fluids which are enclosed in a container. 

This paper has several purposes. One is to indicate some principal properties of the 
frequencies and modal structures of the oscillations. We consider here only Boussinesq 
fluids with linear stratification, i.e. constant Brunt-Viiisiilil frequency N ,  and we 
report on other stratifications subsequently (see also $7). We defer to  a later paper 
discussion of viscous effects. A prominent feature of our investigation is the inclusion 
of arbitrary values of N and of the Coriolis parameter f. In  this way we attempt to 
assess the relative importance of stratification and rotation on the, motions that we 
discuss. For instance, we indicate a number of properties of particular oscillations to 
which we refer as class I1 modes, with frequencies h in the range 0 < A2 < min ( f2, N2). 
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Class I1 waves resulting from variations in the boundary surface(s) of a homogeneous 
fluid have been investigated in many papers (see LeBlond & Mysak (1979) and Mysak 
( 1 9 8 0 ~ )  for references and commentary). However, very few papers have considered 
such waves in a continuously stratified fluid, and none examine the problem in the 
complete N 2 / f 2  parameter range. In  particular, Wang & Mooers (1976), Clarke (1977) 
and Huthnance (1978) investigate the class I1 waves which propagate in a direction 
parallel to a horizontal shoreline in a uniformly rotating stratified fluid, when the 
fluid depth may or may not vary in the (off-shore) direction normal to the coast. 
Class I1 waves with vertical nodes that arise when the mean fluid depth is uniform are 
known as internal Kelvin waves because of the dynamical similarity to the (baro- 
tropic) Kelvin wave which exists for a homogeneous rotating fluid with a free surface. 
However, none of these papers study contained fluids. Further, all their analyses 
apply only to the limit of long waves, or small aspect-ratio limit, which is appropriate 
for some channel flows but not for most bounded fluids. Our results hold in the more 
complex situation where the horizontal and vertical scales are comparable, so that the 
oscillations do not preserve hydrostatic balance. 

Another of our purposes is to characterize some effects of container geometry on 
rotating stratified fluid oscillations. Again, all previous investigations have considered 
only unbounded channels with some possible long shore variations (see Mysak 1980a 
for references), with primary focus on the barotropic modes. We discuss certain 
similarities and differences in the frequencies and structures of the oscillations which 
arise because of various container geometries. A further objective is to indicate how 
the energy in an arbitrary initial disturbance of a contained rotating stratified fluid is 
partitioned among the oscillations. Some of this energy excites the steady (frequency 
zero) mode, in a manner which has been discussed previously (Howard & Siegmann 
1969). However, the distribution of the remaining energy among the time-dependent 
modes has not been considered elsewhere in the literature. We focus on the case of a 
cylindrical boundary surface when N 2 / f 2  is arbitrary, but extensions are straight- 
forward to other situations where the frequencies and structures of the oscillations 
can be obtained explicitly. The role of the class I1 modes in particular is described and 
illustrated. 

Motivation for the investigation of these waves comes from both geophysical and 
laboratory situations. For example, oscillations in lakes could be studied by assuming 
a portion of the boundary is a free surface while the remainder is rigid. Similarly, this 
approach could be applied to obtain information about the oscillations in certain capes 
and bays. In  this paper we restrict attention to the properties of waves in a completely 
rigid container, which is one experimentally relevant configuration, and omit the 
analogous development for the partially rigid case. As justification for our neglect of 
the free-surface effects, we note the conclusion of Kamenkovich (1977), that the 
approximation of a rigid lid filters out surface gravitational waves completely but 
hardly distorts internal gravitational waves. 

We remark that some studies of internal waves in the ocean are concerned only with 
the behaviour of class I modes for which min (f2, N2) < A2 < max (f2, N 2 ) .  For example, 
a recent review (Garrett & Munk 1979) states that the ‘permissible range of fre- 
quencies is f 6 o < N ’. It is true that experimental data, for example that of Cairns 
& Williams (1976) for the power spectrum of vertical isotherm displacement, shows a 
sharp cut-off in energy at 1 A1 = N. However, significant energy levels are recorded for 
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Ih) < f. This suggests the importance of waves of subinertial frequencies, which 
consist of class I1 waves along with shelf waves, Rossby waves, etc. Indeed, in the 
deep ocean where N a  and f are comparable, waves of class I1 would be expected to be 
relatively more significant than those of class I. The importance of such waves is 
borne out by the large number of observations of low-frequency waves in coastal 
regions of the ocean. A review (Mysak 1980b) indicates the existence of such features 
in data from a great variety of the world’s coasts. In addition, coastally trapped waves 
have been reported off some islands. The bulk of the oceanic observations have been 
for barotropic low-frequency waves, the existence of which depends on rotation but 
not stratification. However, some investigators have recognized the importance of 
the effects of stratification as well. For example, Smith (1978) suggests a significant 
role for baroclinic class I1 waves in the dynamics of the circulation off the western 
coast of South America. Some discussion of this particular paper, and its connection 
with a few of our results, will be made at  the end of $ 6. 

It is to be expected that low-frequency baroclinic class I1 waves would be significant 
in many large lakes. This is because in winter N2 is closer to f2 than is the case in the 
upper ocean (see Eckart 1960). Also, the bounded geometry considered in this paper 
is a natural model of the closed boundary of lakes. For a lake, the horizontal length 
scales are sufficiently small for the influence of the boundaries on the interior oscilla- 
tions to be very significant. In  fact, Csanady (1976) has reported the presence of 
low-frequency waves in Lake Ontario. Wunsch (1973) has argued that baroclinic 
class I1 waves, of the particular type known as internal Kelvin waves, are a plausible 
mechanism for the production of a significant mean current. Such currents, which are 
counter-clockwise in the Northern hemisphere and may reverse with depth, have been 
widely observed in large lakes. Hamblin (1978) studied oscillations in a large lake 
using both numerical techniques and observations. He concluded that there was 
considerable evidence, in terms of frequencies and modal structure, for the occurrence 
of class I1 waves. Another example is provided by Ou & Bennett (1979), who studied 
the wind-induced motion in Lake Kinneret. They concluded that a large-amplitude 
internal Kelvin wave can reproduce well the primary response of the lake. Further, 
their theory can account for the principal features of the second-order mean current, 
if variable depth of the lake is incorporated into their model. 

In  $ 2  we formulate the mathematical problem for the oscillations that we shall 
study. Particular attention is directed towards indicating the assumptions on length 
scales and non-dimensional parameters under which our analysis is valid. An eigen- 
value problem is presentred for the modal structures and frequencies. Assuming the 
existence of square-integrable oscillatory motions, we derive in $ 3  a number of 
properties of the eigenvalue spectrum and eigenfunctions. For axisymmetric con- 
tainers we present several more specific results. In $ 4 debailed solutions for the class I, 
class I1 and transition oscillations (at the frequency separating class I and I1 behaviour) 
are presented for a right circular cylinder. Similar results are discussed for a sphere, 
and the two cases are compared to illustrate some effects of boundary geometry. In 
$ 5, for the particular case f = N 2 ,  a description of both class I and I1 modes is provided 
for a container of arbitrary shape. In $6 the solution for an arbitrary initial dis- 
turbance in the cylinder is found for all values of N and f. It is suggested that class I1 
modes are typically excited with a non-negligible amplitude. Finally, a discussion of 
our results is provided in $7. Amongst other matters, we explain the relationship 
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between the mathematical problem we analyse and the corresponding one with 
rotation only and no stratification (Poincarh’s problem), and the consequences of the 
differences are indicated. 

2. Formulation 
We consider the motions of a fluid rotating uniformly with angular velocity Q 

about an axis parallel to gravity. We assume that the Boussinesq approximation is 
valid and, in this present paper, that the effec/ts of viscous and thermal dissipation 
may be neglected. The equations of motion are given by 

v.q* = 0, 7r+q*.v7* = 0 

with the equation of state 
p* = p [  1 - a(7* -?)I. 

The variables P*, 7*, p* and q* are the pressure, temperature, density and velocity 
relative to a co-ordinate system rotating with the fluid; g is the acceleration due to 
gravity in the direction of the unit vertical vector k; a is the coefficient of thermal 
expansion; 7, and 7 are constant mean values of the density and temperature; and 
f = 2 0  is the Coriolis parameter (in oceanographic problems f = 20sin (latitude)). 
The inviscid flow is required to satisfy the boundary condition 

q*.A=O o n B  (2.5) 

( B  and A are the container surface and the unit exterior normal vector), together with 
inhomogeneous initial conditions 

We assume that the motions are small deviations from the motionless state P,, 7, 

and p,. If we suppose that the Froude number FR = f2L/g is sufficiently small so that 
the centrifugal force in (2.1) can be neglected, it follows that the functions P,, r8 and 
p8 depend only on the vertical co-ordinate z ( L  is a characteristic horizontal length 
scale). The linearized equations are obtained by setting 

q* = Eq, P* = P,+EPP, p* = & + E P ,  

dP8 - 
7* = 78 - E -  (ap)-17, 

dz 

where E may be regarded as a Rossby number characterizing the magnitude of the 
initial perturbation. We simplify these equations by eliminating density in favour of 
temperature and by writing them in terms of variables q, P and 7, to obtain 

qt +fk x q = - V P  + N27k, 

v . q  = 0, 5+rC.q = 0, (2.81, (2.9) 

(2.7) 
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where the Brunt-V&is&lZi (or buoyancy) frequency is 

In this paper we consider the case N 2  > 0 of stable linear density stratification. The 
perturbation variables satisfy the boundary condition of the form (2.5) and in- 
homogeneous initial conditions that are derived from (2 .6) ,  namely 

q(r, 0 )  = qo(r), 7(r, 0 )  = 70(r). ( 2 . 6 ~ )  

It is instructive to note the restrictions on the physical parameters that are implicit 
in our formulation of the problem given by equations (2.7)-(2.9) with (2 .5)  and ( 2 . 6 ~ ) .  
In making the Boussinesq approximation, variations in fluid density are neglected 
as far as they influence inertia, but variations in buoyancy are retained. The specific 
conditions under which this approximation can be made (see Spiegel & Veronis 1960) 
are valid for most geophysical motions of interest. In  neglecting diffusive effects, we 
have assumed that the Ekman number E = u / f P  and the parameter E/u are both 
very small. Here 1 is the smallest of the vertical and horizontal length scales associated 
with the problem; u is the coefficient of viscosity; and u = U / K  is the Prandtl number, 
in which K is the coefficient of thermal diffusivity. Characteristic values of these 
parameters in the ocean or atmosphere are generally very small. On time scales of 
O(f-l), the effects of diffusion in most geophysical contexts are negligible except 
possibly in thin boundary-layer regions. In assuming that the Rossby number e is 
small, we are restricting our attention to small-amplitude oscillations where the 
magnitude of the resulting velocity fields are small compared with the rotational 
velocity fL. In this present paper, we consider only the case in which gravity is parallel 
to the axis of rotation. In assuming that the Froude number FR = PL/g is negligibly 
small, we have ignored the curvature of the potential surfaces due to centrifugal 
force. In the final section, we shall briefly discuss how the results described in this 
paper are modified when gravity and the rotation axis are not necessarily aligned. In  
particular, we will mention the geophysically relevant case of radially symmetric 
gravity in a sphere, as well as the effects of centrifugal force when the fluid is rapidly 
rotating. 

Within the context of the approximations mentioned above, this mathematical 
model is valid for all values of N / f  and for all values of the aspect ratio H / L  ( H  is a 
characteristic vertical length scale). The only restriction is that the parameter f 2L/g 
remains small. In terms of physical applications, it  is desirable to be able to permit 
a wide range of values of N / f .  For example, in the thermocline region of the upper 
ocean, N / f  is much greater than unity ( N / f  = O( l o 2 ) ) .  However, this is not true a t  
great depths and, as Eckart (1960) remarks, one may scarcely conclude that the ratio 
is greater than unity everywhere. Observations in fresh-water lakes indicate the 
existence of strong stratification due to summer heating, giving values of N / f  in 
September of 300. On the other hand, winter data from Lake Michigan suggests that 
N / f  may be less than unity throughout a considerable part of its volume. Of course, 
the most realistic geophysical model would allow N to vary with depth. In a subse- 
quent paper (see Friedlander & Siegmann 1981), many of the results of this present 
paper are extended to the case of variable N .  As we discuss in 5 7, in the subsequent 
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paper we also allow for curvature of the potential surfaces, which can be a significant 
factor when applying the results in a geophysical context. 

We seek the solution to the above problem given by (2.5)-(2.9) in terms of a super- 
position of time-independent flow and time-dependent normal modes. The velocity 
qo and the temperature T~ of the steady portion are related to the pressure Po by the 
geostrophic equations : 

f f r x q , - N 2 7 0 r i + V P g  = 0, k .q ,  = 0. (2.10) 

It has been shown (see, for example, Howard & Siegmann 1969) that Po satisfies the 
potential vorticity equation 

(2.11) 

together with certain boundary conditions. On the 'flat' portions of B, i.e. where A 
is parallel to k, the boundary condition is that the initial temperature is conserved, 

(2.12) 

On the rest of B where IA.frl < 1, let r be any closed curve bounded by the inter- 
section of a plane z = constant with B.  For each such curve r, one boundary con- 
dition is 

(2.13) 

where VH Pp is the projection of VP, in the horizontal plane z = constant and 8 is 
arc length. In  addition, the boundary condition (2.5) requires that, for IA.frl < 1, 

A x  k . V P ,  = 0. (2.14) 

It can be shown that (2.13) is equivalent to the conservation of the integral of tem- 
perature over the horizontal region bounded by I?. An example of the solution of 
(2.11)-(2.14) is included in $6.  

Once the steady component of the flow is determined, the time-dependent portion 
of the non-dissipative flow must be constructed as a solution of (2.5), (2.7)-(2.9) with 

q(r, 0 )  = qo(r) - qJr), 7(r, 0) = - ~ g ( r ) .  (2.16) 

We use the method of separation of variables to seek solutions of the form 

(a, 7, P) = ( Q W ,  TP), W ) )  eiAt. (2.16) 

The solution to (2.5), (2.7)-(2.9) and (2.15) would then be a superposition over h of 
the modal solutions (2.16). Examples of the modal superposition will be given in $6. 
An alternative formulation of this initial-boundary-value problem is obtained if we 
substitute (2.16) into equations (2.6) and (2.7)-(2.9) to give 

with 

iAQ+fkxQ = - V @ + i V T f r ,  (2.17) 

'7.0 = 0, iAT+fr.Q = 0, (2.18), (2.19) 

Q . A = O  on B .  (2.20) 
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We manipulate this system of vector equations to obtain the equation satisfied by 
the pressure @, namely 

(2.21) 

with the boundary condition 

(2.22) 
a@ 

oh [ n z - i v a ]  az 
A.v@-r(f ixk) .v@+ f N 2 - f 2  - ( A . ~ ) - = o  on B. 

Equations (2.21) and (2.22) are the generalization of Poincad’s problem to incor- 
porate the effects of stratification. 

We must be circumspect in applying the results of our normal-mode analysis to 
arbitrary containers in view of several investigations of the homogeneous case 
N 2  = 0; cf. Stewartson & Rickard (1969), Stewartson (1971). Results for containers 
that are conical or concentric spheres suggest that the modal spectrum may be con- 
tinuous and that the corresponding eigenfunctions may have singularities in the flow 
domain. Our general results are predicated on the existence of square-integrable 
solutions of (2.21) and (2.22). We confirm in later sections that this assumption is 
justified for particular geometries, as well as for more general geometry in the special 
case N 2  = f z. In the final section, we comment briefly on the absence of continuous 
spectra. 

3. General properties of oscillatory modes for N 2  9 f2 
In this section we present several characteristics which must be satisfied by eigen- 

funct,ions (0, T ,  @) and eigenvalues h of the system (2.17)-(2.20). We do not con- 
struct explicit solutions here, but rather assume that square-integrable eigenfunctions 
exist. That some container geometries exist for which this assumption is true is 
demonstrated in Q 4. We first prove general properties that hold for the solutions to the 
eigenvalue problem (2.17)-(2.20). 

Property 1. For N 2  9 fz a pressure gradient in the fluid is necessary to sustain an 
oscillatory mode. 

Proof: Suppose VO = O i n  (2.17). Using (2.19) in (2.17) yields 

ih(Q - (NZ/h2) wk) +fk x Q = 0, (3.1) 

where we have written w = k. Q .  Next, the scalar product of (3.1) and k is 

(h2-NZ)W = 0, (3.2) 

and using (3.2) and the vector product of (3.1) and k gives 

( A z -  f2)  QH = 0. (3.3) 

In  (3.3) QH = Q -wk is the projection of the velocity in the horizontal plane. From 
(3.2) and (3.3), it  follows that Q = 0 (and therefore also T, from (2.19) is zero), 
except possibly when h2 = f 2  or h2 = N 2 .  If A2 = f 2 ,  then from (3.2), w = 0; let 
Q ,  = u(z, y ,  z )  f + v(x, y ,  2) 3 in Cartesian co-ordinates. From (2.17), v = & iu, and by 
(2.18), it follows that u and v are harmonic functions with respect to the variables x 
and y. Hence (2.20) guarantees that Q H  = 0,  a result obtained by Kudlick (1966) 
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when N2 = 0. If on the other hand h2 = N2, then QH = 0 from (3.3). From (2.18) 
and (2.20), w must vanish also. 

The result of property 1,  that the existence of an oscillatory mode assures a non- 
uniform pressure distribution in the container provided N2 =k f", justifies our formu- 
lation (2.21) and (2.22) of (2.17)-(2.20) in terms of pressure alone. We also make use 
of property 1 in some of our subsequent results. 

Property 2. Eigenvalues h are real. 
Proof: Find the scalar product of (2.17) and Q*, where the asterisk denotes com- 

plex conjugate, then use (2.19) to eliminate T ,  and apply (2.18) to obtain 

iAIQ12+fQ* .kx Q+N2(ih)-llw12 = -V.(Q*@). (3.4) 

We integrate (3.4) over the volume V of the container and use Gauss' theorem to 
obtain 

The surface contribution that would appear in (3.5) vanishes because of (2.20). Next, 
find the scalar product of the conjugate of (2.17) with Q and repeat the above steps to 
obtain 

Adding (3.5) and (3.6) gives 

Using our assumption that modal eigenfunctions are square-integrable over the 
container volume, it follows from (3.7) that each h is real. 

Property 3. For N 2  =t= f2, ha < max (f2, N 2 ) .  
Proof: Find the scalar product of (2.17) with its conjugate and hence obtain 

lV@ 12 = A21 Q 1 2  +f21 QH 12 + 2ihfQ .f x Q* + N41T12 + ihN2(Tw* - T*w) .  

Use the conjugate of (3.4) in (3.8), together with (2.19) to eliminate T ,  to give 

(3.8) 

IV@l = (f" - h2) I QH I + h-2(N4 - h4) I WJ - ihfV.  (Q@). (3.9) 

Then integrate (3.9) over V and use Gauss' theorem, 

where again the surface contribution vanishes by (2.20). If either 

or 

then the integrand on the right-hand side of (3.10) is non-positive. Using square- 
integrability of the modal eigenfunctions, in either of those cases it follows that 
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IV@l = 0. By property 1, we therefore conclude that no oscillatory modes can exist for 
ha 2 max (f2, N 2 ) .  The best frequency bound for a non-rotating fluid with vertically- 
varying stratification N = N ( z )  is A2 < N L ;  property 3 can be generalized to the 
corresponding result in such a rotating variably-stratxed fluid. 

Although property 3 ensures that he is bounded from above by max (f”, N 2 ) ,  ha is 
not bounded from below by min (fa, N 2 ) .  Thus, we can expect to find solutions to  the 
eigenvalue problem (2.21) and (2.22) for 0 < A 2  < max(f2,NB). The oscillatory modes 
for N 2  =+ f divide naturally into two classes of solutions: 

Class I, for which min ($, N 2 )  < A2 < max df”, N 2 )  and (2.21) is hyperbolic; and 
Class 11, for which 0 < ha < min (j?, N 2 )  and (2.21) is elliptic. 

We note that treatment of the transition case h2 = min (f2, N 2 )  proceeds differently, 
because manipulations in the derivation of (2.21) and (2.22) aasume A2 =I= f 2  and 
A2 + N2.  We consider the transition case in properties 6 and 7. 

Property 4. Let (Q(a, T(a) and (Q($, Z&)) be eigenfunctions corresponding to eigen- 
values A and p, respectively. If h + p, then 

a a a  

(3.11) 

Proof: Find the scalar product of (2.17) for A-eigenfunctions with Q(p), and that for 
the conjugate of (2.17) for p-eigenfunctions with Qta, and hence obtain 

ihQ,*,). Q(a +fQ$).  fi x Qm - N2TA)wTp) = - Orp,. V@(a, 

- ipQC*,) Q(u + f Q(a - fi x 0;) - N2T& w(a = - Q(a. V@&. 

(3.12) 

(3.13) 

Adding (3.12) and (3.13) and using both (2.18) and (2.19) gives 

~ ( A - P )  QC*,).Q(a+i(h-p)N2TC*,)T(u = -V. (@(aQC*,,+ @$)Q(a). (3.14) 

After integrating (3.14) and noting that the right-hand side vanishes by (2.20), we 
obtain (3.11) providing h + p. 

For N 2  = 0, (3.11) was derived by Greenspan (1968). As was the case for a homo- 
geneous fluid, it is useful for solution of initial-value problems to find an alternative 
expression of (3.1 1) in terms of pressure eigenfunctions alone. With manipulations 
similar to those above, we can derive 

Appropriate modifications of (3.15) are necessary if either he or p2 equals N2.  

of class I1 necessarily propagates in the same direction as the mean rotation. 
Property 5. Suppose the container B is symmetric about the z axis. Then any mode 

Proof: Define the operator 

so that (2.21) and (2.22) may be written 

V.6@ = 0, fi.6@+i-(fixr().VO f = 0 on B. h 

(3.16) 

(3.17) 
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Multiplying the first of (3.17) by @*, integrating over the container volume, and using 
Gauss’ theorem yields 

JjJ V V@.V@*dv =JJB@*A.O@dZ. (3.18) 

Applying the boundary condition in (3.17) and simplifying, we obtain 

Note that, for class I1 modes, the integrand on the left-hand side of (3.19) is non- 
negative. Moreover, from property 1, this integrand must be positive for N 2  + f2. 

(A straightforward extension of property 1, using (3.10), shows that a pressure 
gradient must also exist for class I1 modes when N 2  = f 2  also.) 

We let 8 denote the (periodic) co-ordinate which increases in the direction of 
k x A. Axisymmetry permits separation of the 8 dependence, so that 

@ = eiko-y, (3.20) 

where x is a function of two other co-ordinates appropriate to describe the region 
inside a cross-section of the container, and k B 0 without loss of generality. Using 
(3.20) in (3.19), it follows that 

(3.21) 

which requires k > 0 and f/h < 0. Therefore, class I1 modes propagate in the direction 
of increasing 8 for f > 0. 

We now prove two further properties that concern the existence of transition 
modes where h2 = min ($, N 2 ) .  

Property 6 .  Suppose N2 > f 2  and let the boundary B consist of a single surface that 
is axisymmetric about the z axis. Then oscillations at the frequency h = - f have the 
form 

@(r, 8, z )  = g&) rkeiko, (3.22) 

where ( r ,e , z )  are cylindrical co-ordinates, k is a positive integer and gk satisfies a 
boundary-value problem with eigenvalue k(k + 1) ( N a  -f”)/f 2. 

Proof: From (2.21) it follows that, for h2 = f2 ,  

v;fo = 0. 
Thus 

Q) 

@ = gk(Z)rkeike 
k =  1 

(3.23) 

(we note that k = 0 is excluded by property 5). From (2.17)-(2.19) the velocity and 
temperature for each wavenumber k can be written in terms of gk(Z)  as 

and 

(3.24) 

(3.25) 
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and the velocity components (u, v) in the ( r ,  0 )  directions satisfy 

and 

(3.26) 

The solution for u corresponding to a non-zero pressure field (cf. property 1) is 

(3.28) 

We assume that the axisymmetric surface B has the equation r = F ( z ) ,  where F is 
differentiable for a < z < b. The unit normal fi can then be written as 

( l , O ,  -F). 1 
(1 + F’2)* 

fi= (3.29) 

From (3.27),  (3.28) and (3.29), the boundary condition (2.20) becomes 

F2gi+2(k+ l ) F F g ; + k ( k +  1 ) g k ( N 2 - f a ) / f a  = 0, (3.30) 

which can be written in a self-adjoint form as 

(Fqk+”gi)’ + k(k + 1 )  gk(N2 - f ‘ ) / f 8  = 0. (3.31) 

If F(a) = 0 (or F(b)  = 0 )  the boundary condition for gk is boundedness at z = a 
(or z = b). Otherwise (3.24) and the boundary condition (2.20) require 

g;(a) = 0 and g i (b )  = 0. 

Hence &(z) is a solution to the above Sturm-Liouville problem, assuming P(z) + 0 
in (a, b) .  In $ 4  we give the specific solutions for gk(z )  in the particular geometries of the 
cylinder and the sphere. 

It is a straightforward matter to generalize property 6 to the cam where B consists 
of a pair of symmetric surfaces; for example, the boundary is given by co-axial 
circular cylinders. A generalization of this property may also be made for non- 
axisymmetric containers. 

From property 5 we concluded that at  least in the case of axisymmetric containers 
there are no class I1 modes with positiveeigenvalues; hence there is no transition 
mode h = + f. 

Property 7 .  Suppose N 8  < p and let the boundary B consist of a single axisymmetric 
surface. Oscillations a t  the frequency A = - N have the form 

O(r, 8) = hk(r) e(k@ (3.32) 

where k is a positive integer and hk(r) satisfies a boundary value problem with eigen- 
value kf I N .  

Proof: In the case A8 = N2 the equations (2.17) and (2.19) can be manipulated to 
give 

(3.33), (3.34) 

(3.35), (3.36) 
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Substituting (3.33)-(3.36) into the divergence equation (2.1 8) and integrating with 
respect to z gives 

(3.37) 

Assume the surface B can be described by the equations z = GT(r) for c < z < b 
and z = G,(r) for a < x < c in which G ,  and GB are differentiable. Hence 

(3.38) 

Thus combining (3.34), (3.35), (3.37) and (3.38) in the boundary condition (2.20) gives 
the pair of equations 

(3.39) 
Gh(iN@, -f@& + GTCNVk @ +fwo = 0, 

Gh(iN@, - f@@/r)  + G,iNV& @ + fw, = 0. 

We substitute an expression for @ of the form given by (3.32) into (3.39) and eliminate 
w, to give the following self-adjoint equation 

I 
- G,) hi@))’ - [(GT - GB) k2/r  + (GT - GB)’kf/N] hk(r) = 0.  (3.40) 

Boundedness is required at r = G,l(c) = G ~ l ( c ) .  The further conditions required are 
(i) w = 0 at r = G,l(a) and G,’(b) provided G,l(a) p 0, G?l(b) 
(ii) boundedness at r = 0 if GFr(a) = 0 or G,’(b) = 0.  
An important special case is GT = G,. Then (3.40) becomes 

0, or 

(rGThi(T))’ - [GT k2/r  + Gk k f / N ]  hk(r) = 0. (3.41) 

If GT > 0 for 0 < r < GT(b), this is a Sturm-Liouville problem and an infinite set of 
oscillations exist for each k when, for example, Gl, < 0. This property is illustrated in 
8 4 in the example of the sphere. 

If the top and bottom are both flat (for example, a cylinder or a truncated cone), 
(3.37) requires w = 0. Thus from (3.37) the equation for hk(r) is 

(3.42) 
1 k2 

h i + - h i - - h  = 0. 
r r Z k  

Using (3.34) in the boundary condition (2.20) as applied to the sides of B gives 

- Nh; + fkh, = 0 on the sides of B. (3.43) 

Since equations (3.42) and (3.43) are incompatible, we conclude that there are no 
oscillations at  frequency h = - N in containers with two flat boundaries. This result 
is illustrated in the example of the cylinder in 5 4. Other generalizations are possible, 
for example, containers with one flat boundary, containers with multiple boundary 
surfaces. 

We note that oscillations at frequency h = + N  would have to satisfy (3.35) with 
the opposite sign on the k f / N  term; such modes cannot occur in containers with 
G& < 0. This result is consistent with property 5,  showing that there are no class I1 
modes with positive frequencies in axisymmetric containers. 
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4. Oscillatory modes in the cylinder and sphere 
4.1. The cylinder 

In  this section we first obtain explicit solutions for the eigenfunctions Q, and the 
eigenvalues h describing internal waves in a rotating stratified fluid bounded by 
rigid cylindrical walls. Let ( r ,  8, z )  denote cylindrical co-ordinates: the co-ordinates 
of the cylinder walls are chosen as z = 0, h and r = a. In cylindrical co-ordinates equa- 
tion (2.21) and boundary condition (2.22) become 

with 

and 

[%I?- - 0  at z = O , h  

We shall examine the two types of solutions discussed in 93: 

class I, min($,N*) < ha < max(fa,N2); 

class 11, 0 < A* < min df2, N2). 

We shall also briefly consider the special cases ha = min (f2, N*) and A2 = .P = N2. 
Class I solutions; min ($, N*) < A* < max ($, N2). The solution to the eigenvalue 

problem (4.1)-(4.3) is determined by separation of variables, giving modes of the 
form 

(4.4) @ = eCke COS mTz -Jk  klkr) - (m > 0, k 2 0, 3/mnk * o) ,  h 

where Jk is the kth Bessel function of the first kind. The boundary condition (4.3) 
requires Ymnk to be the nth positive solution to the transcendental equation 

Amnk3/mnk Jk(Ymnk) +fjWk(3/mnk) = O, (4.5) 

where hmnk and ymnk are related by the equation 

[Note that h can be either positive or negative.] 
These solutions are very similar to those in a homogeneous fluid except for the 

modified frequency range. Examination of (4.4)-(4.6) shows that clam I waves exist 
if either f = 0 or N = 0. Some eigenvalues from (4.5) and (4.6) have been obtained 
numerically for Ne = 0 by Kudlick (1 966). When both rotation and stratification are 
present, the class I internal wave can be viewed as a rotational wave modified by 
stratificatioh (or vice versa). 
Class 11 so lu t im;  0 < A2 < min (f”, N*).  Equation (4.1) is elliptic and the solution 

to the eigenvalue problem is 
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where I k  is the kth modified Bessel function of the first kind. The boundary condition 
(4.3) requires that amk satisfy the equation 

with 

We next investigate the existence of solutions hmk and am, for the coupled system 
of equations (4.8) and (4.9). Using recurrence relations satisfied by I k  (see, for example, 
Relton 1946), equation (4.8) can be rewritten in the form 

(4.10) 

Since the left-hand side of (4.10) is < 1 and the azimuthal wavenumber k > 0, it 
follows that solutions for the frequency hmk, if they exist at all, must have the pro- 
perty that hmk is negative. This conclusion is consistent with the general property 5 
of $3. Hence class I1 oscillations are waves travelling around the cylinder in the same 
direction as the mean rotation. 

For each m and k there exists at most one mode with frequency hmkl  which is 
obtained by considering the intersection of the two curves yl(hmk) and 9z(hmk):  

(4.11) 

(4.12) 

It is appropriate to consider separately the cases f 2  < N 2  and f z  > N z .  For fZ c N*, 
figure 1 gives a sketch of the curves yl(hmk) and yz(hmk) in the range O c l&kl cf. 
There are two possibilities shown for &(Arnk); the solid curve labelled (a) which inter- 
sects yz(hmk) and thus produces a solution A,, to (4.9) and (4.10), and the dotted curve 
labelled (b) which does not. Hence the necessary and sufficient condition for the 
existence of an eigenvalue is 

(4.13) 

Since lAmkl --f f corresponds to amk+ 0, the limiting behaviour of y z ( h m k )  can be 
determined using the power series expansion for the modified Bessel function. Using 
(4.11) and (4.12) the inequality (4.13) implies that a mode of frequency hmk exists for 
those wavenumbers m and k that satisfy the inequality 

k(k + 1) h2 f2  (mm)Z+k(k+ l)h2 < N2. 

We note that if there exist integers m and k such that 

k(k+1)h2 _ _  f“ 
(mm)8 + k(k + 1) h2 - Nz’ 

(4.14) 

(4.16) 
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F I Q ~  1. The possible intersection of the curves y,(h) end ya(h) in the casef* < N*.  

I 

I 
I 
N 1x1 

FIQURE 2. The intersection of the curves y,(h) and y8(h)  in the C ~ E B  N g  < fa. 

then the corresponding frequency &k = - f. This result is in agreement with that 
obtained for the transition mode described in property 6 of $3. For the cylinder, 
equation (3.25) has solutions 

g k  = 008 (%%nz/h), 

for those values of f2/N2 that satisfy (4.16).  Hence the eigenfmction of a transition 
mode in the cylinder is 

with 
= rk cos (mnzlh) eike, 

&k = -f' 
In  the casef2 > N2,  figure 2 indicates the curves and y2(&k) in the range 

0 < l L k l  < N .  Since -+ N corresponds to amk+ 0, an asymptotic expansion for 
the modified Bessel function with large argument is used to determine the behaviour 
of &(Amk). We find [see figure 21 that, for all wavenumbers m and k, there exists a 
unique p i n t  of intersection of the two curves, giving an eigenvalue - lhmkl that 
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Y 

-r  
1 x*  1 U 

FIGURE 3. The frequency spectrum for fixed positive wavenumbers wa and k 
and variable N a / j a ;  z = N a / ( N Z + j a ) ,  y = & / ( N 2 + j B ) .  

satisfies (4.9) and (4.10). The asymptotic expression for hmk as it tends to - N  is 

(4.16) 

These solutions correspond to those obtained by Krauss (1 966), who studied internal 
waves in rectangular geometry. Class I1 waves may be called internal Kelvin waves 
because they have a structure similar to that of Kelvin edge waves. Finally we observe 
that in this parameter range there is ?u) transition mode h,k = - N  between the 
waves of class I and class 11. This result is, of course, consistent with property 7 of 5 3 
as applied to cylindrical geometry. 

In the special case f = N ,  non-trivial solutions of class 11, i.e. solutions to (4.9), 
require 

(4.17) 

Substitution of (4.17) into (4.10) gives the explicit expression for the frequency of the 
class I1 wave, 

(4.18) 

Further consideration of this special case, including the mode at frequency! = N ,  is 
made in $6.  

The behaviour of the frequency spectrum for both classes of internal waves, for 
fixed positive wavenumbers m and k and variable N2/f2, is illustrated in figure 3; 
the abscissa is z = N 2 / ( N 2 + f 2 ) ,  0 6 z 6 1, and the ordinate is y = hkk/ (N2+p) ,  
0 < y < 1. This transformation puts rotation (stratification) dominated behaviour at 
the left-hand (right-hand) side of the figure. Property 3 ($3)  requires that all fre- 
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quencies lie below the lines y = x for x > and y = 1 - x for x < 4. Each curve in the 
'butterfly' represents a solution of class I to equations (4.6) and (4.6), and the single 
curve that lies below both y = x and y = 1 - x represents the class I1 solution to 
equations (4.8) and (4.9). Of course, this curve arises for the cases A,, < 0 only. 

The following argument can be used to indicate the shape of the curves corres- 
ponding to class I waves. Equation (4.6) can be written in the (x, y) variables as 

(4.19) 

When x = 1 (i.e. f = 0) the radial wavenumber Tmnk/a  is given via the nth positive 
zero of JL, and, except for the smallest root YrnOk, the nth root 3/mnk varies little from 
Tmnk as x decreases to  zero. Consequently the nth curve in figure 3 lies close to the 
straight line given by substituting ymnk into (4.8). This line is shown dashed in figure 3, 
as are the boundary lines z k  = f8 and A&k = N 2 .  If k + 0 and A < 0, it can be shown 
that the nth curve is above the line for 0 < x < 8 and below the line for 4 < x < 1 ; this 
situation is indicated by the solid curve in figure 3. If k =I= 0 and A > 0, the inequalities 
are reverse$ while if k = 0 the nth curve coincides with the straight line. 

The curve that corresponds to the class I1 wave is determined by rewriting (4.9) 
in (x, y) variables. From (4.16) it follows that in the region close to x = 0 (N = 0) 

x( kh)2 
Iy (kh)8+(mna)2' 

Thus, from (4.14), this solution may be regarded as a constituent of the steady mode 
in the limit of a homogeneous fluid with vanishingly small stratfication (see Allen 
1971 for a discussion of this limit). The curve for the class I1 mode intersects the.line 
y =  l - x a t  

I 

(mna2+ k ( k +  1) h2)  = x*. 
(mna)2+ 2k(k+ 1) h2 - 

For x > x* there is no class I1 mode; however, the curve continues, as shown on 
figure 3, above the line y = 1 -x. In  this region the curve represents the class I mode 
whose radial wavenumber is given by the smallest solution of (4.5) and (4.6). This root 
approaches the smallest zero Ymok of J;  as x approaches 1. 

Completeness of the set of modal solutions (4.4)-(4.9) for k non-zero is an open 
question. However for any m and non-zero k ,  exactly one class I mode with x > 0 can 
be found with a value of ymnk lying between successive zeros of Jk. The same is true 
for A < 0 if x is close enough to 1. Further, a class I1 mode can always be found for 
smaller x when a root does not occur between the first two zeros of Jk. This enumeration 
strongly suggests that the eigenfunction set is complete. 

X =  

4.2. T h e  sphere 

Another geometry for which equations (2.21) and (-2.22) can be separated is a sphere, 
which for simplicity we choose to be the unit sphere r2 + za = 1. Solutions can be 
obtained by modifications of the procedure for a homogeneous fluid (Greenspan 1968). 
We seek solutions to equation (4.1) with boundary condition 

(4.20) 
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Separable modal solutions are found by a transformation of the co-ordinate system 
(r ,  z )  into an oblate spheroidal co-ordinate system ( 6 , ~ )  introduced by Bryan (1889). 

The solutions for the eigenfunctions and the eigenvalue equations for the class I 
and class I1 modes are given in table 1. We fmd that results are similar in many 
respects to those obtained in the cylinder. The class I modes are directly analogous to 
the modes that exist in a homogeneous rotating sphere. For instance, for k > 0 and 
both N 2  andf2 non-zero, it can be shown that there is at  most one more root of the 
class I eigenvalue equation than the number that exist for N 2  = 0, and no more roots 
than occur for f 2  = 0, just as for (4.5) and (4.6) in a cylinder. 

To examine the class I1 modes (A2 < min (f2, N 2 ) ) ,  it  is useful to consider separately 
the cases f 2  < N2 and f2 > N2, as indicated in table 1.  In  both cases the eigenvalue 
equations permit a t  most one solution for k positive and h negative, and none for A 
positive (as predicted by property 5, $ 3). 

In the cylinder we showed that for f 2  c N 2  it is possible for transition modes 
between waves of class I and class I1 to exist. In  this parameter range analogous 
results concerning the existence of transition modes are valid in the sphere. From 
property 6 ($3) the eigenfunction for the mode with frequency A,,& = - f is obtained 
via equation (3.30). In the case of a sphere r2 + z2 = 1, (3126) becomes 

(4.21) 

Equation (4.21) is the associated Legendre equation and the solutions bounded a t  the 
poles are 

gk = pk(z) ,  (4.22) 
with 

(4.23) 

Hence from (3.22) 
In  the case f 2  > N 2  there is a significant difference between the geometries of the 

cylinder and the sphere. In the cylinder there is no transition mode; all the class I1 

= Pk(z) rkeike, with h,k = - f. 
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modes must become a constituent of the steady mode as N 2  --f 0. In contrast with this 
result, it can be shown, after considerable algebra, that in a sphere those class I1 
modes with (n  - k )  even cross over to become class I modes as N z  decreases from f z. 
From property 7 (f  3) the eigenfunctions corresponding to h = - N are obtained via 
equation (3.41). In  the case of a sphere, this equation becomes 

(4.24) 

This is a form of the standard hypergeometric equation, and to obtain polynomial 
solutions which remain bounded at r = 0 and r = 1 the values of f / N  must be res- 
tricted to 

k f / N  = (2m+k+i)z-(k2+b),  (4.25) 
with 

hk(r) = r k ~ ( - m , k + m + ~ ; k + l ; r a ) ,  (4.26) 

where m is a positive integer (Erdelyi 1953). Using transformation identities (Abramo- 
witz & Stegun 1965) for the polynomials in (4.26), we obtain from (3.32) the following 
expression for the eigenfunction 

Qrnk = Pk+k(( 1 - r2)') eike (4.27) 

with h,k = -N. We note that although the stratification N a  at which transition 
occurs is always small (from (4.25) we conclude that N < f/5), the main point is that 
not all the oscillatory modes in a homogeneous rotating sphere are funnelled into the 
oscillations ha = f z  as Nz increases from 0 to fz. This difference between the cylinder 
and the sphere in spectral dependence on Nz/ f2  is a consequence of the fact that, in a 
rotating stratified sphere, the dependence of the motion on the co-ordinates r and z 
is closely related. However, in a cylinder the dependences are inherently distinct 
except for axisymmetric motions. 

In  the special case f 2  = Nz, the treatment of class I1 modes in the sphere is analogous 
to that of the cylinder. The equation (2.21) and boundary condition (2.22) reduce to 

VZQ = 0 
with 

(4.28) 

(4.29) 

Solutions of (4.28) and (4.29) can be written explicitly in spherical co-ordinates 
(P ,  496) as 

Qrnk = eckepmp~(co8$), hrnk = - G ,  f k  O < k < m .  (4.30) 

Further discussion of the case fa = Nz is contained in f 5. 

5. Oscillatory modes for fz = N 2  
We next consider the time-dependent modes when the two natural frequencies of 

oscillation in the fluid are identical. For this case, results may be found for more 
general container geometries than only for those considered in the previous section. 
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Class I solutions: A2 = f 2  

For A2 = f 2  the interval of possible frequencies for class I oscillations reduces to a 
single value. For the cylinder of $4, figure 3 illustrates pointedly how these modes are 
focused into the natural frequency. To determine the structure of this mode in an 
arbitrary container, note that property 1 of 5 3 does not forbid motion with vanishing 
pressure gradient in the case h2 = f 2  = N2. In fact, (3.10) implies that the pressure 
gradient must be zero in this case. It follows from (2.17) and (2.19) that the velocity 
and temperature fields of the h = f mode, using cylindrical co-ordinates, are related by 

(5.1) 
i 

v=&u, T=-w, f 

where 
J 

Q(r) = (u, v, w) and r = (r ,  8,~). 

Thus, specification of this oscillation in any container requires determination from 
initial conditions of two complex functions u and w, which are constrained only to 
satisfy (2.18) and (2.20). 

We note that the focusing of the class I modes when f 2  = N 2  might be conjectured 
to lead to ‘resonant’ modes with time behaviour such as te*ift. If any such form of 
resonance is assumed to occur, it  can be shown that a contradiction arises. As a 
particular example, suppose solutions are sought with Q, oscillatory but Q and T 
growing linearly with time: 

Using (5.2) in (2.5) and (2.7)-(2.9) and separating teiffand eiffterms gives 

ijQ1 +ffr x 0 1  -f2T1k = 0, (5.3) 

i.fQo +fE x 0 0  - f 2ToE + V@o + 01 = 0, (5.4) 

ifT1+w1 = 0, (5.5) 

ifTo + wo + Tl = 0, (5.6) 

- ifQT. Qo + f r( x 0:. Qo + ifw:wo = 0. 

if 0:. Qo + f E x Qo . Qr - ifwow: + I Q 1 ) 2  - if T,w: + V@, . Q: = 0. 

along with (2.18) and (2.20) for both Qo and Q1. Eliminating Tl from (5.3) using ( 5 4 ,  
and scalar-multiplying the conjugate of the result with Qo gives 

(5.7) 

Then after eliminating To from (5.4) with (5.6) and finding the scalar product with 
Q: we obtain 

(5.8) 

Adding (5.7) and (5.8), using (5 .5 )  and the continuity equation, integrating over the 
container, and applying the boundary condition gives 

It follows from (5.9) that no resonance mode of the form (5.2) can occur in a finite 
container. 
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Class 11 solutions: 0 c A2 c f 2  

In contrast to the class I modes, the structure and spectrum of the class I1 modes do 
not undergo a significant change when f 2 - t N 2 .  For instance, figure 3 suggests that the 
frequency of the class I1 mode in the cylinder varies smoothly as f 2  increases or 
decreases through N2.  Further, it is noted in property 5 of 0 3 that a pressure gradierit 
must exist for class I1 modes when N2 = f 2. The principal simplification in the explicit 
calculation of these modes for f 2 = N 2  in an arbitrary container is that the frequency h 
disappears from the eigenfunction equation. That is, from (2.21) it follows that the 
pressure distribution is harmonic, 

V2@ = 0.  (5.10) 

Further, the boundary condition (2.22) reduces to 

i A d . V @ + f f r x f i . V @  = 0 on B. (5.11) 

Solutions for the modal structure and frequencies in a cylinder are given by (4.7), 
(4.17) and (4.18), while those in a sphere are given by (4.30). The collection of class I1 
oscillations in a sphere exhibits the property that each allowed frequency, i.e. any 
rational number between 0 and -f, has an infinite number of polynomial eigen- 
functions associated with it. 

As for the class I modes when f 2  = N2,  it is readily possible to investigate the 
class I1 modes in more general geometries than when f += N 2 .  We shall confine atten- 
tion to containers for which the z axis is an axis of symmetry, although it is epidently 
possible to extend some of our results to more general containers. We denote by 8 the 
periodic co-ordinate which increases in the direc tion of fr x d. 

We have shown in property 5 of Q 3 that class I1 modes propagate only in the same 
direction as the mean rotation, i.e. in the direction of increasing 8. This result is valid 
for all fa  and N2.  In  the casef2 = NZ, (3.19) reduces to 

(5.12) 

We note that (5.12) could be the basis for a variational principle for the determination 
of A .  

We provide a further example of the solution of (5.10) and (5.11) by taking the 
boundary B to be a prolate spheroid. The interior of the spheroid can be expressed as 

(r,8,z)  = (Asinhgsin+,O,A coshtcos$), 0 Q g < c, 0 Q + Q n, 0 Q 8 g 2n, 
(5.13) 

and E = c is the boundary B. We choose A sinh c = 1, so that in cylindrical co-ordinates 
B is given explicitly by 

r2+(1-d-2)22= 1, (5.14) 

where d = coshc. Since (5.10) separates in prolate spheroidal co-ordinates, the boun- 
ded solutions @ = e i M X  which are of interest here are 

x(E ,$ )  = Pk(coshf)P~(cos+),  0 < k < m. (5.15) 
A 

With fi = 5 and equations (5.13) and (5.15), it can be shown that (5.11) reduces to 

ih(d2- l)P:(d)+ikfdP&(d) = 0. (5.16) 



144 8. Friedlander and W. L. Siegmunn 

Using a standard recurrence relation for Legendre functions (Gradshteyn & Ryzhik 
1965), (5.16) implies that frequencies of oscillation A for class I1 modes in the prolate 
spheroid satisfy 

(hm+fk)dP~(d)-A(m+k)Pi-,(d) = 0, 0 < k < m. (5.17) 

Note there is a one-to-one correspondence via (4.30), (5.15) and (5.17) between modes 
in a sphere and in a prolate spheroid. 

From (5.14) it follows that the limit d-rm corresponds to the situation when B is 
the unit sphere. Further, when d+m the term dPh in (6.17) dominates Pi-l. Thus, 
for the sphere, we can recover from (5.17) the result (4 .30) .  For the case of a nearly 
spherical spheroid, i.e. for large finite d ,  the frequencies of oscillation can be obtained 
from the asymptotic behaviour of (5.17). Employing the formula (Gradshteyn & 
Rvzhik 1965) 

(5.18) 

and expanding the frequency for any allowed n and k in an asymptotic series, 

A N A@) + d - W )  + . . . , 
we find from the 0(dm-l)  terms in (5.17) that 

A@) = -fk/m, (5.19) 

ma - k2 
A(') = A(o), 0 < k < m .  

m ( 2 m -  1) 
(5.20) 

Thus, for any oscillation with frequency A ( O )  in a sphere, (5.20) provides an O(G?-~) 
frequency correction when the sphere is deformed slightly into the prolate spheroid 
given by (5.14). 

Investigation of containers for which Laplace's equation does not separate when 
the boundary B is a constant-co-ordinate surface may be made by various approxima- 
tion methods. One of these would apply if the boundary differed slightly from one for 
which the solutions were easily obtained. For example, suppose B is a small perturba- 
tion from the unit sphere which is axisymmetric but is otherwise arbitrary. We let 
the exterior normal n be given by 

n = 6 +qJ(+)& (5.21) 

where E + 1. (Since we have continued to consider only axisymmetric boundaries, 
y is independent of 8, and there is no perturbation in the 8 direction.) 

To obtain approximations for the modal structures and frequencies, we now 
expand 

(5 .22)  

and apply (5.11) on p = 1 -eD;l(y) + ... . The lowest-order solutions for W) and 
A(O) are just those for the spherical boundary, given in (4 .30)  for any positive integers 
k and m (0 < k < m). For any fixed values of k and m, the first-order corrections W 
and A(1) for this mode satisfy the following equations, obtained by using (6.22) in 
(5.10) and (5.11): 

V2@U = 0, (5.23) 

i h ( o ) @ ~ ) + f @ ~ l )  = - {iA(l)@$" +y(+) [iA(O)<D?) +fcot g5@$o)]> on p = 1. (5.24) 

1 @(r, E )  = W)(r) + EW(r) + . . ., 
A(€)  = A@) + eA(1) + . . . , 
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The appropriate solution of (5.23) may be chosen as 
00 

@(I) = X cjPfPf(cos 9), 
j = k  

(5.25) 

where C, is arbitrary and the C, for j + m remain to be determined. Introducing 
(4.30) and (5.25) into (5.24) and using the same recurrence relation which simplified 
(5.16) produces the result 

Orthogonality of the Legendre functions, along with the solvability requirement, 
implies from (5.26) that 

c, = -- " + k ~ , ,  j + m ,  
m-9 

and 

where 
r n  

(5.27) 

(5.28) 

(5.29) 

J O  

Thus equations (5.28) and (5.29) provide the O(E)  frequency correction to any oscilla- 
tion with frequency A(O) when the boundary of the sphere undergoes an axisymmetric 
perturbation satisfying (5.21). Equations (5.25),  (6.27) and (5.29) represent the 
corresponding change in modal structure. 

The arbitrariness of the boundary perturbation means that the results (5.28) and 
(5.29) considerably generalize (5.20),  for which the deformed surface must be prolate- 
spheroidal. Indeed, we can show that (5.28) and (5.29) must reduce to (5.20) for this 
case as follows. Determination of the exterior normal to (5.14) in spherical co-ordinates 
and for large d leads to the identifications B = 

r(9) = COS 9 sin 9, (5.30) 

in (5.21). Using (5.30) in (5.29) along with the formula (Gradshteyn & Ryzhik 1965) 

(2m- l)cosq5Pk-,(cos$) = ( m - k ) P k ( c o s $ ) + ( m -  1 +k)Pk(cos$) (5.31) 

yields Dm = ( m - k ) / ( 2 m -  1). Therefore, equation (5.20) is confirmed as a special 
case of (5.28). We note finally that a small non-axisymmetric boundary perturbation 
is analytically more cumbersome. However, the rather laborious perturbation 
analysis can be performed even in the case of a non-axisymmctric deformation of the 
boundary. Unlike (5.25), corrections for an O(1)  mode corresponding to a single 
azimuthal wavenumber k cannot in general be obtained independently. Rather, the 
corrections can be determined to the composite mode 

and 

m 

k=l 
@) = X bkeikepmPk(COS $), 

as functions of the coefficients b,. 
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6. The initial-value problem in the cylinder 
We are now in the position to give the formal solution to the initial-value problem 

in the cylinder. We seek the solution to the problem given by equations (2.7)-(2.9) 
with boundary conditions (2.5) and initial condition (2.6), when the container surface 
B is a cylinder of radius a and height h. We write the solution for the total pressure 
field as a superposition of the steady field and time-dependent normal modes 

n> 0 
k>O 

We denote class I1 modes in the summation (6.1) by coefficients am,. 

boundary surface is a cylinder 
The geostrophic pressure Pg satisfies (2.11), (2.12) and (2.13) in the case that the 

with 

on z = O,h 

and 

/02n 3 (a, z, 0) a ae = f 
ar 

and where 
P, = constant on r = a for fixedz. 

We note that equation (6.2) represents the fact that the geostrophic part of the solu- 
tion to an initial-value problem in a geostrophically free region is that unique 
geostrophic flow which has the same potential vorticity as that of the initial flow. It is 
also the case that on a horizontal boundary the temperature must equal its initial 
value (6.3), and on a non-horizontal boundary the ‘potential circulation’ must equal 
its initial value (6.4). The solution to (6.2)-(6.4) can be represented as a Fourier series 
in 0; 

P ,  = Pk(r,z)eike 
k b  0 

(for details see Howard & Siegmann 1969). 
The eigenfunctions am&) and the frequencies Amnk of the oscillatory modes in 

the cylinder have been determined explicitly in $4. To complete the initial-value 
problem, it is therefore necessary to compute the coefficients a,,,. To do this it is 
desirable to consider separately the two cases f 2  + N 2  and f2 = N2.  In the first case 
there exists a triply infinite family of class I modes, whereas in the second case these 
modes degenerate to a single mode with h2 = f2 .  

Case I :  f 2 +  N 2  

In $3, property 4, we proved that eigenfunctions (Qa), qA)) and (Q(p), T,,,) corres- 
ponding to distinct eigenvalues h and p are orthogonal. We will use this property to 
compute the coefficients amnk. First the velocity and temperature can be represented 
in terms of normal modes by applying the appropriate differential operators to (6.1). 
The only possible difficulty in this process is the term-by-term differentiation with 
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respect to r .  This procedure is clearly permissible for the k = 0 series and may be 
justified in the usual way if k + 0. We write 

n> 0 
k> 0 

and 

n>O 
k2O 

and 

We apply the initial condition (2.6) to (6.5) and (6.6) to obtain 

and 

n>O 
k> 0 

n>O 
k 2  0 

We therefore wish to express Qo(r) and To(r) as Fourier series in the functions 
Qmnk(r) and T!,nk(r) given by (6.7) and (6.8). In  $ 4  we computed the eigenfunctions 
@mnk(r)  for the pressure in the cylinder, which are given by (4.4) and (4.7). The eigen- 
function sets for Qo(r)  and T'(r) are clearly complete in the 8 and z variables. As we 
remarked in $ 4, the enumeration of the zeros of Jk and I ,  strongly suggests, but does 
not prove, that there are sufficiently many eigenfunctions in the r-variable to com- 
plete the representation of Qo(r)  and !Po@). 

We assume that the Fourier series (6.9) and (6.10) converge uniformly to Qo(r) and 
To@) respectively (i.e. we assume that Qo and To are twice differentiable with respect 
to 8 and z and sufficiently differentiable with respect to r). Term-by-term integration 
is3 then justified and the coefficients am,, can be computed using the orthogonality 
condition (3.11): 

(6.11) 

A conceivable difficulty is the possibility that eigenvalues whose subscripts (m, n, k) 
are not identical may not be distinct. In  the cylinder the eigenvalues are given by 
(4.5) and (4.6) or (4.8) and (4.9). Clearly, two eigenvalues with the same subscripts k 
and m but distinct subscript n must be distinct. It is possible that two eigenvalues 
could have distinct subscripts k and suitable distinct values of m and n that allow 
the two eigenvalues to be identical. In this case, however, the orthogonality of the set 
{eike} ensures that alnnk is determined as in (6.11) without difficulty. 
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Case 2: f 2  = N2 
In  this case all the class I modes are focused into a single natural frequency. The 
structure of this oscillation is determined in $ 5 ;  the pressure gradient vanishes and 
the frequency f mode consists of two arbitrary complex functions as given in (5.1). 
The class I1 modes remain a double infinite set. For the cylinder the eigenfunctions 
and eigenvalues are given explicitly in $ 4  by (4.7), (4.17) and (4.18). 

The pressure, velocity and temperature written in terms of a superposition of the 
geostrophic mode, the class I mode and the class I1 modes have the forms 

k>O 

(6.14) 
1 ap, itz 

T ( r , t )  =--++W-e'ft+a x bmkTmk(r)eXP[ihmkt], 
~2 az f m> 0 

k>O 
where 

and Qmk and Tmk are given by (6.7) and (6.8) with f2 = N2. 

of this expression is 

0 = (c, i ~ ,  $1, T = itz/f, (6.15) 

We set (6.13) equal to the given initial velocity qo(r). The azimuthal component 

(6.16) 

The boundary condition applied to the frequency f mode requires %(a, 8, z )  = 0. The 
components vmk(r) can be evaluated a t  r = a using (4.7) and (6.7) with = N2 to 
give 

(6.17) 

We determine the coefficients b,, by evaluating (6.16) at r = a and using the ortho- 
gonality of {eae} and {cos mnzlh) to give 

To justify the term-by-term integration implicit in this procedure, we assume that 
(v0- (l/f) aP,/ar)a is twice differentiable with respect to 8 and z. 

Once the coefficients bmk are computed from (6.18), the unknown complex functions 
C and tz are determined from, for example, the r and z components of (6.13) evaluated 
at t = 0. This procedure gives the velocity and temperature in real function notation as 

u(r,t) = ( ~ ~ - ~ ~ ~ ) c ~ s f t + ( v ~ - G ~ = ~ ) s i n f t + E ( r . t ) ,  

v(r, t )  = (vo - 2)t=o) cosft - (u - 
w(r,t)  = (W, - , -W~=~)  c0sft+f(7~-T~~~)sinft+Z(r,t), 

sinft + G(r, t ) ,  

1 
7(r, t )  = ( T ~  - Tt=o) cosft - - (wo -i3t=o) sinft + T(r, t ) ,  

f 
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where 

k>O 

and 
i apg 

W , t )  = Nax +@ bmkTmk(r)exp [i&aktl* 
m>O 
k>O 

It is clear that by construction this solution satisfies the boundary condition, 
u(r, t )  = 0 at r = a, provided the initial radial velocity uo satisfies this condition. It 
can also be verified that the solution satisfies the conservation equation, again pro- 
vided that the initial velocity q, satisfies the conservation equation. 

Examples 
The coefficients a,,, can be computed readily for certain simple examples of initial 
conditions. In the case of the following axisymmetric initial conditions, 

70 = 0, qo = 6Jl(pr/a) cosnzlh, 
where 

Jl(B) = 0,  

the geostrophic mode P, is given by 

(6.19) 

(6.20) 

For the class I modes Qmnk and T,,, are computed from (6.7), (6.8) and (4.4). The 
integral in the numerator of the expression (6.11) for a,,, can then be calculated with 
Qo and To determined from (6.19) and (6.20). It is a fairly simple procedure to show 
that the only non-zero coefficient a,,, occurs when k = 0, m = 1, and the nth zero 
ylnk of Jl is equal to B. For the clLs I1 modes, property 6 of $3  shows that there are 
no modes with k = 0 ;  hence, in this example, no class I1 modes are generated. Thus 
we conclude that an initial disturbance composed of a single axisymmetric mode will 
excite only the geostrophic mode and a single class I wave whose radial and vertical 
wavenumbers are exactly those of the initial disturbance. 

In  the case of a non-axisymmetric initial condition, the problem of computing the 
coefficients a,,, becomes somewhat more complicated. We consider the example 
where 

In  this caae the geostrophic mode is given by 

-f J~ - e cos - . 
' Q  = +- f W/N8ha  (t) ie (3 

(6.21) 

(6.22) 

Rather laborious computations of the integrals obtained by substituting (6.7), (6.8) 
and (4.4) together with (6.21) and (6.22) into (6.11) yield the following information. 
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The coefficients am,, are zero for rn + 1, k + 1. However it is no longer the case that 
alnl is zero for ylnl + 8. (In fact, we observe that 8 is not a root of the transcendental 
equation (4.5) that defines Y,,~.) An initial non-axisymmetric disturbance will excite 
modes of all radial wavenumbers. The dominant mode will be the mode whose radial 
wavenumber ylnl is nearest to 8. In the parameter ranges for which a class I1 mode 
exists, this mode will always be excited. The amplitude of the class I1 mode will be 
non-negligible relative to the amplitude of the class I modes. 

In the special casef2 = N2,  the results are analogous to those that hold forf2 + N 2 .  
An axisymmetric initial velocity will generate only the geostrophic mode and the 
single class I mode of frequency f. A non-axisymmetric initial disturbance will also 
excite the class I1 modes. For the example given by (6.21) the coefficients bmk can be 
computed from (6.18). It is clear that bmk = 0 if m + 1 and k + 1 .  

We have indicated that a non-axisymmetric initial disturbance excites the class I1 
modes with non-negligible amplitude. It is of interest to consider the velocity field 
associated with a class I1 mode. We substitute the expression Qmk given by (4.7) into 
equations (2.16)-( 2.19) to obtain the following expressions for the velocity components 
of the class I1 mode: 

x ( cos-sin(k0- mhnz I A m k l t ) ) ,  (6.23) 

fork > 1, m > 1 and a m k  + 0. 
Figure 4 illustrates the r-dependence of the velocity components given by (6.23)- 

(6.25). We note that u m k ,  Vmk and w m k  are all zero at  the centre of the cylinder r = 0,  
and of course u m k  is zero at the boundary r = a. The components vmk and wmk are at  
maxima a t  the boundary r = a ;  however, the radial component umk achieves its 
largest value in the interior. The turning point for thmk as a function of r is at  the point 
ro satisfying the equation 

(6.26) 

with 

As h & k + f Z  the quantity amk-+O. In this case we use the power-series expansion for 
the modified Bessel function (Relton 1946) to approximate the solution of (6.26) as 

2 N 2 - f 2  
rt - ($) T k ( k -  1). (6.27) 
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r = O  r = a  

FIGURE 4. The r-dependent behaviour of the velocity components of a class I1 wave in a cylinder 
for fixed positive wavenumbem m and k. 

The condition (4.14) for the existence of class I1 modes guarantees that r$ < u2. 
Clearly, the peak in the radial velocity component occurs close to the centre of the 
cylinder for those modes with low azimuthal wavenumber k.  When f z  < N2,  (6.28) can 
be further approximated by k Nh 

r o w - -  
mn f * 

We note that Nh/f is the Rossby radius of deformation, which for the ocean is typically 
about 60 km. 

The above observation concerning class I1 modes can be compared with the situa- 
tion for baroclinic Kelvin waves. These waves have been discussed by many authors, 
including Wang t Mooers (1976), Smith (1978) and Mysak (1980). They obtain 
long-wave approximations for waves trapped at a rectilinear boundary or channel, 
with the condition imposed of decay away from the boundary. Those solutions are 
similar to the class I1 waves of this present paper in that, for example, vmk and wmk 
decay away from the boundary. However, in the rectilinear trapped-wave solution, 
the radial component of velocity is identically zero, whereas in our case umk achieves 
its maximum in the interior. 

We remark that viewing a baroclinic Kelvin wave purely aa an edge wave pheno- 
menon may be misleading. Rather, the internal Kelvin wave is a low-frequency 
(sub-inertial) natural mode of the rotating stratified fluid in a contained geometry. 
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It is a member, albeit a somewhat anomalous one, of the class of free modes of the 
system. The vertical and long-shore components of velocity are significant only at 
the boundary. However, the effects of the interval Kelvin wave are not completely 
confined to the edge, since the velocity component normal to the boundary peaks in 
the interior. Saylor, Huang & Miller (1978) report that there are observations of 
oscillatory flows in the interior of Lake Michigan of frequency identical with that of 
the coastal internal Kelvin wave. 

Internal Kelvin waves have been observed (Smith 1978) propagating poleward 
from the equator along the coasts of Ecuador and Peru. It has been postulated (see, 
for example, McCreary 1976; Philander 1979) that Kelvin waves play a prominent 
role in the adjustment process involved in the phenomenon known as ‘El Nifio’ 
[Upwelling along the coast of Peru is seasonal with a considerable interannual varia- 
bility. At infrequent intervals the upwelling is absent for an entire season, a natural 
catastrophe referred to as ‘El Nifio’]. It is known that there is little change in local 
coastal forcing that could give rise to El Nifio. It is therefore likely that the pheno- 
menon is the result of some sudden change in the forcing conditions over the interior 
ocean far from the coast. This hypothesis is more plausible when the internal Kelvin 
waves are viewed as an ocean-wide mode with significant effects at the boundary, 
rather than purely an edge wave trapped by the boundary which would respond only 
to local conditions. We have shown that the velocity component of an internal Kelvin 
wave normal to the boundary is non-zero and hence could be instrumental in com- 
municating the effects of an interior forcing to the coastal regions. 

7. Discussion 
The primary purpose of this paper is to study small-amplitude oscillatory motions 

in a uniformly rotating, density-stratified fluid inside a rigid container. We assume 
the fluid is Boussinesq and inviscid. We examine here only the situation when the 
rotation axis is parallel to gravity and the Brunt-VBisiilB frequency N is constant. 
However, we investigate a variety of container shapes, and our results are not 
restricted to the long-wave or shallow-layer limits in which the vertical scale is much 
smaller than horizontal scales. We also consider arbitrary values for AT and the angular 
rotation frequency f. We note that the response of the fluid to an arbitrary initial 
perturbation consists of both oscillatory motions and a time-independent quasi- 
geostrophic motion. The latter, steady motion is specified by the initial potential 
vorticity together with appropriate boundary conditions, leaving the oscillatory 
motions to be excited by the remainder of the initial disturbance. 

Assuming the existence of square-integrable modes, we demonstrate a number of 
their properties and obtain explicit descriptions of the free modes associated with the 
cylinder and the sphere. In general there exist two distinct classes of oscillations 
which we have called class I and class 11. The class I modes are inertia-gravity waves 
which are closely related to the inertial waves that exist in a homogeneous rotating 
fluid, and to internal waves that exist in a stratified non-rotating fluid. Inertial waves 
have been extensively examined and a summary of the results is found in Greenspan 
(1968). Inertial modes in a container satisfy PoincartYs problem, 

f2 V2@ - - @*z = 0 
A2 
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with 

Equations (7.1) and (7.2) are obtained from (2.21) and (2.22) by setting N 2  equal to 
zero. To emphasize the similarities and differences, we rewrite (2.21) and (2.22) as 

with 

where ua = N2-A2 (for convenience we have assumed N 2  > f2; otherwise, 
ua = A2-N2). In the case of axisymmetric modes where (A x k) .VO is zero, (7.3) and 
(7.4) are exactly equivalent to (7.1) and (7.2) with f2replaced by (N2-f21.  Hence, the 
axisymmetric class I modes are exactly equivalent in structure to the axisymmetric 
inertial modes (recall property 6 of 8 3 that there are no axisymmetric class I1 modes). 
The problem for non-axisymmetric class I modes is similar to the equivalent Poincarb 
problem, the only difference being the way in which the eigenvalue occurs in the 
coefficient of the second term in the boundary condition. This difference gives rise to 
a modification of the dispersion relation for the eigenvalues as functions of the wave- 
numbers. In a cylinder, the change is illustrated by comparing the coupled transcen- 
dental system (4.5) and (4.6) for Amnk and ymnk with the equivalent system with 
N2 = 0. For a cylinder the frequency distribution of inertial modes for fixed wave- 
numbers m and k is shown in figure 3 by the intersection of the curves with the y axis. 
The introduction of stratification shifts the position of each value of A2, and the 
permissible range for A2 contracts. At the critical value N 2  - f 2, the class I spectrum 
degenerates to a single point A2 = f 2  = N2.  This mode, with zero pressure gradient, 
has a structure, described in 5 5, which is completely different from an inertial mode. 
As N 2  increases beyond f 2, the pattern is repeated nearly symmetrically, which is to 
be expected in view of the analogies between the case of pure rotation and pure 
stratification (see Veronis 1970). A novel feature is the appearance of a transition 
mode between the class I and class I1 modes at  ha = $1. 

In  contrast with the class I modes, the class I1 low-frequency modes are not analo- 
gous to inertial modes. The existence of class I1 modes is crucially dependent on the 
presence of both rotation and stratification. These waves which have been referred 
to as internal Kelvin waves are asymmetric, propagate only in the direction of the 
mean rotation, and have a spatially decaying pressure field in the direction away 
from the boundary. The fact that (7.3) and (7.4) admit solutions of the class I1 type, 
while there are no analogous solutions to (7.1) and (7.2), can again be attributed to 
the particular way in which the eigenvalue enters the coefficient of the middle term 
in the boundary conditions (7.2) and (7.4). Thus, the subtle but important difference 
between the problem studied in this paper and Poincarb’s problem gives rise to the 
distinct and novel features that are amongst OUT principal subjects of interest here. 
We remark that Malkus (1 967) investigated hydromagnetic planetary waves, formu- 
lating the problem so that it became Poincarb’s problem. In  that hydromagnetic case, 
the problem is of interest because of the somewhat complicated relation between the 
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wave frequency and the eigenvalue of Poincar6’s problem. In contrast, our new results 
stem from the fact that our problem is not equivalent to PoincarB’s problem. 

As we noted in $ 2, results exist which suggest that the inertial-mode spectrum for 
a homogeneous fluid is continuous in certain geometries. For example, the energy of 
waves in a conical container appears to be funnelled into the apex, which results in a 
continuous spectrum of ‘singular modes ’. A problem of particular geophysical interest 
is that of inertial waves in a rotating spherical shell. Stewartson & Rickard (1969) use 
Laplace’s tidal equations to study waves in a thin spherical shell. They conclude that 
the asymmetric modes are not square-integrable at so-called critical latitudes where 
the characteristics are tangent to the inner boundary. In the problems for a rotating 
stratified fluid we have described here, there is no evidence of singularities which 
would indicate that the modal spectrum is continuous. For class I modes, this is not 
surprising in view of the analogies with the modes of the homogeneous problem, for 
which the spectra for a cylinder and a sphere have been shown to be denumerable but 
dense (see Greenspan 1968). A continuous spectrum need not be expected for a smooth 
perturbation of such boundaries into other more singular boundaries. In fact, there is 
evidence from work of Stewartson & Walton (1976) that, even in a spherical shell, 
singularities at  critical latitudes can be removed (or a t  least weakened) by the intro- 
duction of stratification. Further, London & Shen (1979) suggest that the critical- 
latitude singularity may be an artifact of the approximations implicit in the derivation 
of Laplace’s tidal equations, in which the vertical structure of the governing equations 
is neglected. Since our work includes stratification and does not neglect vertical (radial) 
structure, we have no reason to be surprised at  the absence of a continuous modal 
spectrum. For the case of class I1 modes, the possibility of a continuous spectrum may 
be ruled out in view of the general result for an elliptic partial differential equation 
with Dirichlet boundary conditions on a non-singular boundary (see Reed & Simon 
1978). 

In this present paper, we have made no restrictions on the ratio of N / f  or on the 
vertical and horizontal length scales, except to require that the Froude number 
F, = f L/g be small. Our results are therefore appropriate to a wide range of labora- 
tory configurations. As noted in $2,  there are geophysical contexts in which N / f  
could be as large as O( 102) or much less than unity, so from a physical point of view 
it is desirable to permit N / f  to be unrestricted. A drawback of the present work lies 
in our assumption that the potential surfaces are always planes perpendicular to the 
axis of rotation. In applying our results to a lake or an ocean basin on the surface of a 
rotating sphere, the restrictions of our model demand that the sphere be replaced by 
a tangent plane and the horizontal component s1, of the earth’s rotation be neglected. 
The neglect of R,, sometimes called the traditional approximation (see Eckart 1960), 
can be justified under certain circumstances, for example when the vertical velocity 
is much less than the horizontal velocity. In his systematic derivation of Laplace’s 
tidal equations, Miles (1974) justifies the neglect of QH by making the assumption of 
a shallow ocean, i.e. H / L  < 1.  Hence, although we place no explicit restriction on 
H/L, we are implicitly assuming restrictions in invoking the traditional approxima- 
tion in order to apply our results in a geophysical context. A further drawback of our 
model lies in the fact that we treat f as constant, whereas geophysically f varies with 
latitude (f = 2s1 x sin (latitude)). The neglect of the latitudinal variation of Coriolis 
parameter eliminates low-frequency Rossby waves. Obviously, a tangent plane 
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approximation neglects effects of sphericity that may be important for geophysical 
or astrophysical models. 

With geophysical and astrophysical applications in mind, we have extended some 
of the results of the present paper to waves in a rotating fluid stratified under more 
general gravitational fields. A radially symmetric field is a reasonable model for 
oceans, the atmosphere, or a planetary core, since it retains the sphericity of the 
potential surfaces fully. The traditional approximation, with its inherent restrictions, 
need not be invoked, and all latitudinal variations are retained. In  Friedlander & 
Siegmann (1982), we show that the basic properties of oscillations described in $ 3  
hold in this more general case. When the gravitational field is radial, the upper bound 
on h2 is increased to f2 + Ng- .  The modes can be classified as to type in a fashion 
analogous to our present classification. However, the situation becomes considerably 
more complicated, in that a wave of fixed frequency may resemble a class I wave 
(hyperbolic) in one spatial region, and a class I1 wave (elliptic) in another spatial 
region. This mixed behaviour leads to wave trapping which is absent from our present 
discussions. Further, when the restriction of small Froude number is relaxed, the 
potential surfaces are distorted by the centrifugal effect. Friedlander & Siegmann 
(1982) consider the case of vertical gravity plus centrifugal force. The major effects of 
the addition of the latter force are to increase the bound on h2, to  decrease the width 
of the frequency range for internal Kelvin waves, and to admit the existence of mixed 
waves. Finally, we note that internal waves in more general gravitational fields are 
described by partial differential equations that are considerably more complicated 
than Poincarb’s problem. The types of explicit solutions that have been examined 
in detail in this present paper, where curvature of the potential surfaces has been 
neglected, are evidently not available. 

The authors wish to acknowledge stimulating conversations with L. N. Howard. 
The work of S. Friedlander was partially supported by N.S.F. Grants MCS 81-01698 
and MCS 79-01718. 
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